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Abstract— This paper presents significant steps towards the
online integration of 3D perception and manipulation for
personal robotics applications. We propose a modular and dis-
tributed architecture, which seamlessly integrates the creation
of 3D maps for collision detection and semantic annotations,
with a real-time motion replanning framework. To validate our
system, we present results obtained during a comprehensive
mobile manipulation scenario, which includes the fusion of the
above components with a higher level executive.

I. INTRODUCTION

In this paper we report on our investigations into the
realization of a basic manipulation layer for a personal
robot performing pick-and-place tasks in environments where
humans live and work. The overall goal of our research
effort is developing a framework that enables a mobile
manipulation system to enter a previously unknown room
and clean a table together with a person. The objects to
be picked up are easy to grasp, rigid everyday objects such
as cups, soda cans, tea boxes, bowls, etc., but they are not
known to the robot beforehand.

This seemingly trivial manipulation task poses serious
challenges for the state of the art in autonomous mobile
manipulation. These challenges include the perception of
object constellations on the table, the geometric reconstruc-
tion of the unknown objects to be picked up from partial
sensor views, the treatment of the rest of the scene as
dynamic obstacles – in particular the person reaching into
the operating space of the robot, the planning and seamless
execution of planned motions when reaching for objects in
the presence of moving obstacles, and the determination of
appropriate grasps based on partial and possibly inaccurate
geometric reconstruction of the objects to be picked up.

Manipulation systems that aim to solve tasks such as
the one presented above require the successful operation of
many complex components, such as 3D perception, motion
planning and more. Furthermore, these components must
function robustly and reliably over extended periods of time
on real hardware. These constraints may explain why rela-
tively few systems are intended to address the domain that
we study [1]–[6]. Due to their complexity, complete systems
have not been fully realized yet, and the research problem
remains open. Our work describes a manipulation system

Fig. 1. Snapshot of the PR2 robot used during the experiments.

with emphasis on robustness and software re-usability, in
addition to safety and functionality.

Our long term goal is to provide robots with safe and
goal-directed real-time manipulation behavior. The robots
should be capable of performing well while using realistic
sensors and making few assumptions about the environment
setup. We aim to produce a system that is safe and robust,
can run autonomously, can handle failures and situations it
has not been presented before. Reliability and flexibility is
not only achieved through the capabilities of the individual
components (perception, planning, etc.) but also through the
task management that synchronizes and parameterizes the
activities in dynamic, context-specific ways and detects and
locally recovers from failures. We use no scripting for any of
the experiments, as all our code runs online and all decisions
the robot makes are in real-time. To this end, we report
on the experiments carried out using our perception and
planning approach on the mobile manipulation system shown
in Figure 1, based on the Personal Robot 2 (PR2).

Our research contributes to the state-of-the-art in au-
tonomous mobile manipulation in the following ways:
• 3D scene perception for manipulation: We propose a

3D scene perception component that computes:
– A dynamic obstacle map, which is represented by a

voxel-based collision map for 3D motion planning.
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Fig. 2. The overall architecture of our system using ROS. Boxes with continuous lines define nodes. Boxes with dashed lines delimit groups of nodes
with related functionality. Communication between nodes is represented by arrows.

– A labeled manipulation scene, which provides a
classification of 3D points into various semantic
categories such as walls and tables.

• Sampling-based motion (re-)planning for reaching: We
propose a sampling-based motion (re-)planning module
that operates on abstract robot specifications and uses
the obstacle map provided by the 3D scene perception
for collision detection. The motion planning component
uses the Open Motion Planning Library (OMPL), which
provides leading-edge motion planning algorithms and
tools for optimizing and smoothing motion trajectories
(more information in Section IV).

All software components necessary to perform the tasks
discussed in this work are modular so they can be reused
individually, and are available Open Source.1 Because of
their modularity, they can be used for robots other than the
PR2 as long as a respective robot description is available.

II. SYSTEM ARCHITECTURE

A. Hardware

Our experimental system is an alpha prototype of the
PR2 mobile manipulation platform (Figure 1). The PR2
comprises an omni-directional wheeled base, telescoping
spine, two force-controlled 7-DOF arms and an actuated
sensor head. Each arm has a 1-DOF gripper attached to
it. The robot can negotiate ADA-compliant2 wheelchair-
accessible environments, and its manipulation workspace is
similar to that of an average-height adult.

1Details on retrieving, building, and running all code described in this paper are at
http://pr.willowgarage.com/wiki/tabletop_manipulation.

2http://www.ada.gov/

The sensor head comprises a Hokuyo UTM-30 planar laser
range-finder on a tilt stage, and a Videre stereo camera on a
pan-tilt stage. The laser is tilted up and down continuously,
providing a 3D view of the area in front of the robot. The
resulting point clouds are the input to our perception system,
which in turns drives our manipulation system. We can, but
do not currently make use of data from the stereo camera. A
second Hokuyo UTM-30 laser sensor, attached to the base,
is used for navigation.

The PR2 carries multiple computers, connected by a
gigabit LAN. The current computing configuration is four
dual-core 2.6GHz machines running Linux. One of the four
machines is modified to run a real-time kernel, providing
a guaranteed 1KHz control loop, via EtherCAT,3 over the
robot’s motors and encoders.

B. Software
A system as complex as the PR2 is driven by a number of

subsystems that need to easily be able to communicate with
each other: hardware drivers, controllers, visual perception,
motion planning, higher level control, etc. The computational
needs of these components virtually necessitate the use
of a distributed computing environment. To accommodate
these needs, we use ROS,4 which provides a communication
framework that hides the complexities of transferring data
between processes, regardless whether the processes run on
the same machine or not.

Processes using ROS are called nodes. Nodes communi-
cate primarily in a publish/subscribe fashion, using common

3http://www.ethercat.org/
4ROS (Robot Operating System - http://ros.sourceforge.net) is an

Open Source project to build a meta-operating system for mobile manipu-
lation systems.



data formats on channels called topics. Nodes can also call
services provided by other nodes, in a manner akin to remote
procedure calls. Abstracting communication between running
processes in this way, through topics and services, allows for
the implementation of a modular system. Modules can be
written in a variety of languages and can execute anywhere in
the network. In addition to the basic communication system,
ROS offers an extensive suite of tools for process control,
system inspection, and data visualization.

The software architecture of our mobile manipulation
framework is illustrated in Figure 2. The figure shows the
complete system, but the focus of this paper is on the
components depicted in color: 3D perception and motion
planning. The architecture can be viewed as a 3-tiered one.
The lowest layer provides the PR2 hardware controllers. The
middle layer contains the functional modules including the
ones discussed in this paper. The top layer is represented
by the task executive that manages the processes at the
lower layers. This is where the tasks that the robot performs
are specified. In particular, the task executive parameterizes
and synchronizes processes such as perception, navigation,
reaching and grasping. Its purpose is to also provide context-
specific control, responsiveness to sensory events, and failure
detection, analysis, and recovery.

The 3D perception system consists of two main nodes
which build two separate maps: a dynamic obstacle map
used for collision detection in 3D while performing arm
movements, and a scene interpretor which aggregates the
acquired point cloud dataset with semantic annotations (e.g.,
class labels such as: floor, walls, tables, objects on table [7]).

Motion planning requiring 3D collision avoidance (for
example when moving one of the arms) is done using
sampling-based algorithms [8], [9]. From an architectural
standpoint, sampling-based motion planning relies on a set
of libraries, following a modular design: actual motion
planning, collision checking and robot modeling are kept
separate. These libraries are used together in a node that
monitors the current robot state and the dynamic obstacle
map, and provides the interface (service calls, topics) to
perform motion (re-)planning.

The modular structure of our framework allows seamlessly
swapping nodes that provide the same interface. This is an
option we often make use of in the development process and
it enables the advancement of the platform.

III. 3D PERCEPTION

To be able to interact with its environment, a robotic
system must first be able to perceive it, and it must do so
accurately and detect pertinent changes as they occur. This
perception component is fundamental to both localization
and motion planning.

The input to the 3D perception module is a set of 2D laser
scan messages, acquired from the tilting Hokuyo laser sensor
installed on the head of the PR2 robot. Figure 3 presents a
detailed version of the 3D perception pipeline used for the
experiments in this paper.

2D laser scans2D laser scans
((LaserScanLaserScan))

3D Perception3D Perception

Laser scan filtering toolboxLaser scan filtering toolbox

3D Cartesian filtered3D Cartesian filtered
point cloudpoint cloud
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table_object_detector
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Fig. 3. Detailed diagram of the 3D perception pipeline presented in
Figure 2. The double arrow messages represent service requests served by
the nodes.

Before projecting each 2D laser scan into a 3D point cloud
Cartesian frame, a set of preprocessing filters are applied, in
order to clean the data of spurious measurements, as well
as to remove points from the scan which are sampled from
the robot body. The latter is achieved by treating the robot’s
body parts as convex hulls and checking the intersection of
the laser scans with the hulls, while the shadow pixels filter
removes erroneous points by comparing the angles formed
between the lines created by subsequent scan measurements
with the viewpoint, against a statistical threshold. However
these filters are part of a more general laser scan filtering
toolbox5. After the data is partially cleaned, we project all the
points left into a global 3D coordinate frame. This constitutes
the input of the two main nodes: the Dynamic Obstacle Map,
and the Scene Interpreter.

To formulate the perception computational models, we
introduce the following notations:
• pi is a 3D point with {xi, yi, zi} geometric coordinates,

pxi , pyi , and pzi refer to the individual x, y, respectively
z dimensions of the point;

• ni is a surface normal estimate at point pi having a
{nxi, nyi, nzi} direction;

• Pn = {p1, p2, · · · } is a set of nD points (also repre-
sented as P for simplicity).

A. Dynamic Obstacle Map

The Dynamic Obstacle Map is comprised of a set of
geometric primitives created from the point cloud P . This
representation is updated in real-time for every new set of
points, and its main usage is to provide support for colli-
sion avoidance (i.e., reactive motion execution) for motion
planning.

The node implementing the Dynamic Obstacle Map takes
any P set of points that is available from the sensor and
inserts it into the map, which can generally be represented
in multiple formats, using: spheres, boxes, points, or triangle

5The toolbox constitutes a separate component that we work on as part of the ROS
project, and falls outside the scope of this paper.



meshes. The latter is not recommended for situations where
the data is extremely sparse, as incremental model updates
become more difficult. In general, the node discretizes the
space into smaller, uniform parts (called leaves for the re-
maining of this article), with a certain user-defined resolution
and publishes them in one of the above mentioned formats
on the ROS network to the collision checker (see Section IV).

If the robot is to be allowed to operate and manipulate
at high speeds, the laser tilt unit must be actuated as fast
as possible, to account for the environment dynamics. This
however has the undesired effect that the total number of
points per sweep is diminished considerably, and small or
fast moving obstacles will not be present in the resultant
map. To compensate for these types of situations, the node
keeps a temporal sliding window (i.e., data queue) for all data
received, and computes the final obstacle map by integrating
all the data together.

A deciding factor on the average computation time per
map is represented by the number of data leaves that are
requested from the motion planner, that is, the resolution of
the world. Because there is no good fixed resolution that best
accounts for all possible scenarios, the Dynamic Obstacle
Map architecture is designed to be parameterizable on the
fly. Furthermore, the task executive can specify what the
space of interest around the robot is – the space that needs
to be accounted for in the map. Taken together, these two
constraints lead to significant computational decreases in the
creation of the map. Algorithm 1 outlines the basic steps that
are used to construct the map in real-time.

Algorithm 1 Dynamic Obstacle Map creation
br, rr // robot bounds and resolution
P = {p1 · · ·pn} // set of 3D points

tmin
+
= 1, tmax

+
= 1 // increment sliding window time

if ¬(∃L) // no spatial decomposition exists (first P)
L ← F(br, rr) // create an empty list L of 3D leaves

for all pi ∈ P do
if (−br ≤ pi ≤ br) // check if inside bounds

estimate (lxyz ∈ L,pi ⊂ lxyz) // find the right leaf for pi
add pi to lxyz

for all lxyz ∈ L do
if (pt

j ≤ tmin∨pt
j ≥ tmax,p

t
j ⊂ lxyz) // check if outside sliding window

remove pj from lxyz

M← F(L) // create the final map from the set of leaves

In addition to the periodical map creation, the node sup-
ports two important service calls, underlined with a double
arrow in Figure 3. The record static map service call triggers
a special mode in the node which records a complete sweep
map as a static fixed reference map, that all recorded data
will be merged with until the next service call. This translates
into:Mf =M∪Mr, whereM represents the map created
from the current set of leaves,Mr is the static fixed reference
map recorded at the service call, and Mf is the final 3D
dynamic obstacle map. Having a static reference map is
beneficial during longer manipulation scenarios, where the
estimated collision map may contain holes due to occlusions
caused by the robot’s arms at certain positions in time.
This may in turn negatively affect the motion planning
algorithms, which in the absence of pertinent solutions will
attempt to use this occluded space, even though it has a

certain probability of still being occupied. By recording
reference maps and combining them, this problem can be
alleviated. Furthermore, the Scene Interpreter can decompose
regions of interest in the reference map such as the table for
example, and remove everything else (such as the objects
sitting on top of it), as shown in Section III-B. Thus, the
reference maps can be updated only with those parts of the
environment which have a higher probability of being fixed
over subsequent pick and place operations.

Fig. 4. Left: a dynamic obstacle map representation Mf over-imposed
on the point cloud P; right: the dynamic obstacle map Mf alone. Please
notice that the object held in the gripper is part of the point cloud P , but
has been removed using the subtract object service call from theMf map.

The second service call, subtract object, introduces a
negative collision map created from a given object that can
be continuously subtracted from the computed maps, that
is: Mf = M rMo, where Mo represents the negative
map created from the given object. The object is given as
either a list of leaves or an oriented 3D bounding box. A
special use of this service call is to subtract objects from the
collision map currently being manipulated with the gripper
(see Figure 4). To achieve this, the node subscribes to the
ROS network and enquires for the current position of the
end-effector, and uses the given oriented object bounds to
subtract the data. Please note that the object present in the
gripper from the left part of Figure 4 is incomplete in P ,
because parts of it are removed by the robot self filter at the
laser scan level, due to the convex hulls of the gripper being
much larger than the actual gripper itself.

B. Scene Interpreter

The second actor of the 3D perception pipeline is the
Scene Interpreter node, which continuously segments and
classifies surfaces by fitting planar models to them, in order
to abstract sensor data and make it more informative.

In general, the planar classification can be performed in
two different ways: i) using a set of heuristic rules, which
make use of the fact that the robot’s Zr axis is parallel to
the Zw axis of the world, and label points based on the
geometrical properties of the planar surfaces they belong to;
ii) using machine learning classifiers which can be trained
on simple sets of features extracted from segmented planar
regions, and the resultant models are used to annotate the
planes with the desired classes. For the purpose of the
experiments in this paper, we are mostly interested in pick
and place operations, and thus the most important areas that
we need to detect are tables and other horizontal planes
which can support objects. Therefore there is no need to
create a feature set and train a model, as it suffices to



construct a single heuristic rule for determining all major
horizontal planar areas in the world that the robot could
operate on. The vertical bounds of the search are given by
the physical constraints of the robot arms, i.e., what is the
lowest and highest place where the robot could pick an object
from. Figure 5 presents a more general scene interpretation
for planar areas segmented from a P point cloud dataset.

Fig. 5. A scene with point annotations labeled with the Scene Interpreter:
floor (dark red), ceiling (dark blue), yellow (walls), and light blue (tables).

The node has two operation modes: i) a continuous mode
where for each acquired P set of points, it labels all major
planar areas; and ii) a service mode, where the task executive
requests a list of tables and objects sitting on them in view.
Algorithm 2 presents a brief description of the computational
steps invoked for finding tables and objects on them when
the node is running in the service mode, and partial results
are presented in Figure 6.

Algorithm 2 Find tables and objects
bz
min, b

z
max // min/max reachable arm positions on z, i.e., table bounds

P = {p1 · · ·pn} // set of 3D points
Pb = {pi, b

z
min ≤ pz

i ≤ bz
max} // subset of all 3D points within table bounds

for all pi ∈ Pb do
estimate (ni from Pk) // estimate surface normal from nearest neighbors
if (α = ni × Z ≈ 0) // check if the normal is parallel to the Z axis
Pz ← pi // add pi to the Pz set

estimate (C = {P1
z · · · P

n
z },P

i
z ⊂ Pz) // break Pz into Euclidean clusters

for all ci = Pi
z ∈ C do

// find the best plane fit using sample consensus
estimate ({a, b, c,d},a · px

i + b · py
i + c · pz

i + d = 0,pi ∈ ci)
estimate (amin, amax) // find the min/max bounds of the planar area
M← F (ci) // add the table parameters to the final map
for all pi ∈ P do

if (ax
min ≤ nx

i ≤ a
y
max, a

y
min ≤ ny

i ≤ a
y
max) // within bounds?

Po ← pi // add pi to the Po set
estimate (O = {P1

o · · · P
n
o },P

i
o ⊂ Po) // break Po into Euclidean clusters

for all oi ∈ O do
M← F(oi) // add the object parameters to the final map

The resultant map M contains a set of tables with their
planar equations and bounds, and a set of object models O =
{o1 · · · on}. These object models represent compact partial-
views representations for the objects supported by tables in
the real world. Their usage is twofold: i) on one hand they
provide the exact goal positions for the gripper; and ii) they
support the subtract object service call from the Dynamic
Obstacle Map, once the object is picked up.

Fig. 6. The extraction of a table surface and the individual object clusters
supported by it, from a partial view.

IV. MOTION PLANNING

Computing safe motions for a robotic system is the basic
component for achieving any useful task. The motion plan-
ning component is what computes these motions. To perform
planning that is fast enough for the PR2, different planners
are used depending on the task.

A. Grid-based motion planning for navigation

When moving the robot base, without moving the arms,
we employ a grid-based global planner and a local controller
designed for efficient motion in tight spaces. Given a goal by
the task-level executive, the planner computes the gradient of
the global navigation function [10], determining an optimal
X-Y (ignoring yaw) kinematic path. This kinematic path is
passed to a trajectory rollout controller [11], which accounts
for the robot’s exact shape and dynamic constraints in
computing desired X, Y, and yaw velocities.

Both the planner and the controller consult a 2D obstacle
map constructed by projecting obstacle data from all avail-
able sources (in our case the horizontal laser and tilting laser)
onto the X-Y plane. This projection produces conservative
navigation behavior: the robot will never choose an unsafe
path, at the cost of excluding some safe paths, such as
moving the base partially underneath a table. In future work,
we will relax the latter constraint by planning for the base
and arm together, possibly by employing the sampling-based
techniques described in the next section.

B. Sampling-based motion planning for reaching

When the robot is supposed to move its arm in order to
reach an object, a motion planner capable of planning in a
7-dimensional state space is needed. The dynamic obstacle
map received from the 3D perception pipeline is to be used
for collision avoidance. The task executive specifies a goal
position / goal region as input. The goal can be specified in
one of two ways:
• explicit: the goal positions are specified for each of the

joints in the arm
• implicit: constraints on the goal position are imposed.

The motion planner is to find a path that takes the robot
to a state that satisfies these constraints.

The output of the motion planner is a kinematic path that
takes the arm from the its current position to the goal while
avoiding collisions.

In addition to constraints specified for implicit goals, it is
also possible that constraints for all states along the solution



path are needed. As an example, this would be useful when
planning for the arm while holding a glass of water: we
want to make sure the water will not be spilled, so the
task executive can impose a constraint on the orientation
of the gripper. In general, a constraint is a function f :
X → {true, false}, meaning that for any state x ∈ X ,
it can be decided whether it satisfies a constraint or not. For
the purposes of our experiments, constraints that restrict the
position of certain robot parts (the gripper) at the goal state
were all that was necessary.

In order to address these needs, sampling-based motion
planners, which have been shown to be able to handle such
problems [8], [9], are used. In particular, Kinematic Motion
Planning by Interior-Exterior Cell Exploration (KPIECE) is
used – a kinematic version of the work in [12].

The main idea behind sampling-based motion planning
[8], [9] is to sample the state space X of the robotic system
and maintain a data-structure of the samples that can be
used to guide the robot to the goal [13]. X is assumed
to be a differentiable manifold of dimension m such that
a single element x ∈ X , x = (v1, ..., vm) completely
describes the state of a robotic system. This means that each
component vi defines a parameter of the system (joint angles,
positions in space, etc.). The notion of Xvalid is defined to
represent the states in X the robot is allowed to be in. These
states are usually collision free states, potentially respecting
additional constraints. An exact representation of Xvalid is
not needed, and would be hard to compute; a process that
decides whether a state x ∈ X satisfies x ∈ Xvalid is
sufficient.

A solution to a motion planning problem is defined to be
the set S = {x0, ...,xk}, where x0 is the initial state and xk
is in the goal region. Each path segment [xi, xi+1], obtained
through linear interpolation, i ∈ {0, ..., k−1}, is assumed to
be contained in Xvalid.

As shown in Algorithm 3, KPIECE proceeds by iteratively
building a tree of motions in the state space of the robot,
starting from the initial state. At every iteration, a state in
the tree is selected to continue the expansion from. This state
is chosen such that it is part of a less-explored region of
the state space. The less explored regions are detected by
imposing a grid on a projection E(X ) of the state space X ,
as shown in Figure 7.

A value of importance is associated to grid cells so that
cells that would benefit the exploration most are more im-
portant. The most important cell is deterministically selected
at every iteration and a state from that cell is chosen for
tree expansion. Grid cells are considered more important
if they are created later in the run, states from them have
been selected few times and the number of states in the tree
of motions covered by the cell is low. Cells are separated
into interior and exterior. A cell is interior if it has 2n
non-diagonal neighbors, where n is the dimension of the
projection E(X ). Giving preference to exterior cells over
interior ones pushes the tree to cover more space faster.

The previously presented KPIECE algorithm is part of
a larger library project in which we work on, named the

Algorithm 3 KPIECE (xstart, allowed time)
time limit← NOW() + allowed time
Create an empty grid G
G.ADDSTATE(xstart)
while NOW() < time limit do

Select a cell c from G, with a bias on exterior cells (80% - 90%)
Select a state s from c according to a half normal distribution
Sample a state x ∈ X
Extend from s towards x until some state x′ (linear interpolation)
if path segment [s,x′] ∈ Xvalid

G.ADDSTATE(x′)
c.score = c.score · α // penalize the score of the cell by α,

// 0 < α < 1 (usually close to 1)
If x′ in goal region, return path to x′

else
c.score = c.score ·β // penalize the score of the cell by β, 0 < β < α

Fig. 7. Representation of a tree of motions and its corresponding
discretization. Cells are distinguished into interior (red) and exterior (blue).

Open Motion Planning Library (OMPL). Currently the li-
brary contains implementations of RRT (Rapidly-exploring
Random Trees) [14], [15], EST (Expansive Space Trees)
[16], [17], SBL (Single-query Bi-directional probabilistic
roadmap planner with Lazy collision checking) [18] and the
version of KPIECE presented in Algorithm 3. In addition to
planning algorithms, OMPL contains code that can do inverse
kinematics using a genetic algorithm: GAIK (Genetic Algo-
rithm Inverse Kinematics) [19]. While this can in general
be orders of magnitude slower than actually solving for an
arm’s angle positions, it is significantly more general: any
set of constraints defining the goal position representable
as code can be used and the provided solution is a valid
one (according to collision detection). Tools for smoothing
solution paths exist as well. For the purposes of this work,
in addition to KPIECE, we also used GAIK, to provide a
goal state when the goal is specified implicitly, and path
smoothing.

The visualization and collision checking tools are kept
separate from OMPL. An abstract interface for a collision
detector is available in ROS, so that different libraries can
be used as a back-end. The representation of the robot inside
the collision detector is based on URDF6. This description is
loaded at runtime from the ROS network and a representation
of the robot’s state space X is automatically constructed.
The robot’s parts are used for collision checking. Having a
state space representation automatically built allows for more
general code, in the sense that the code is not specific to the
PR2, but can be applied to any robot described using URDF.

6Universal Robot Description Format, http://pr.willowgarage.com/
wiki/RobotDescriptionFormat



When a robot holds an object in its gripper, collisions
between the grasped object and the other objects in the
environment must be avoided as well. To achieve this, the
collision detector allows attaching objects to various robot
parts. At the same time, the perception pipeline subtracts the
grasped object as if it were part of the robot, as shown in
Figure 4. This allows motion planning to compute plans that
correctly account for the changes in the environment after
an object is grasped.

Motion (Re)PlanningMotion (Re)Planning

OMPLOMPL

Sampling-basedSampling-based
motion (re)planningmotion (re)planning

replan_to_state
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Fig. 8. Detailed diagram of the sampling-based motion planning archi-
tecture presented in Figure 2. The double arrow messages represent service
requests served by the nodes.

A node monitors the current state of the robot and main-
tains a collision space based on the dynamic obstacle map
received from the perception pipeline (see Figure 2). Once a
request for planning is received, a motion plan that starts
at the current state of the robot and takes it to the goal
position is computed using OMPL (the detailed architecture is
represented in Figure 8). The computation has a time limit,
and if no motion plan is found within the allotted time,
failure is reported. On success, the computed motion plan
is published to the ROS network. As long as the robot has
not reached its goal position and a new goal has not been
received, the node continues to monitor the current state of
the robot and the perceived map. If at any point in time the
currently executed plan becomes invalid (something is ob-
structing the robot’s path), or the computation of the motion
plan previously failed, this information is reported and a new
motion plan is computed (hence the term “replanning”), to
address the changes observed in the environment. This logic
is represented in Algorithm 4. Previous work [20] advocates
the benefits of maintaining information between planning
attempts and not necessarily planning until the goal is in
fact reached. While this is indeed an ingenious approach
to replanning, we chose to employ a simpler version of
replanning for the initial version of our setup: we use faster
planning algorithms and always plan to a state as close as
possible to the goal.

C. Grasping

The long term goal of our setup is to use a partial-
view grasp planner for determining the grasp (end-effector
position and orientation). The idea would be to attempt to
compute reasonable grasps based on laser data that does not

Algorithm 4 Motion (Re-)Planning
G // goal region specification
s = x0 // current/starting state (s)
repeat

repeat
get (M =Mi, s = xi) // get the map Mi & robot state xi

estimate (S = {x0, ...,xk} = F(M, s,G)) // compute a motion plan
until (S ⊂ Xvalid,xk ∈ G) // found a plan
repeat

get (M =Mi, s = xi) // get the map Mi & robot state xi

until (S 6⊂ Xvalid) ∨ (s = xk) // current plan not valid or we are done
until (s = xk) // goal is reached

necessarily fully cover the object we want to grasp. However,
until this part of our system is complete, we simplify the
task and assume that a direct approach with the gripper in
horizontal orientation will properly grasp the object. This
limits the set of objects that we can grasp to those that
can be reasonably approximated using the bounding boxes
generated by our perception approach. Such objects include
small box shaped objects and soda cans. Our approach,
however, is not restricted to these kinds of objects and can
easily be extended to more general grasping situations.

V. EXPERIMENTAL RESULTS

We have conducted multiple experiments on the PR2 robot
to validate the efficiency of our proposed architecture. The
experiments consisted in the tight integration of the afore-
mentioned system components7, in the following scenario:

1) the task executive triggers a slow laser scan and calls
the Scene Interpreter’s service request for a list of table
candidates with objects on them;

2) if the list returned is not within reach, the executive
plans a trajectory for the base, and moves the robot in
the vicinity of the closest table;

3) the task executive triggers fast laser scans and starts
the Dynamic Obstacle Map;

4) from the list of objects on table, one is randomly
chosen, and its goal pose is given to the motion
planner, which computes a safe trajectory for the arm;

5) while the arm is moving, the information provided
by the Dynamic Obstacle Map is used to replan the
trajectory in case it’s deemed as no longer safe;

6) the scenario ends when the end effector reaches the
goal position and the object is in a graspable state.

An example of a path planned for the arm is shown in
Figure 9. Figures 10, 11, and 12 present the time spent for
computing the collision map, the arm inverse kinematics, and
the trajectory to follow respectively, for one such experiment.
The four plots shown in each figure represent laser sweeps of:
1 second in a static scene (1s static), 1 second in a dynamic
scene (1s dynamic), 2 seconds in a static scene (2s static),
and 2 seconds in a dynamic scene (2s dynamic) respectively.

As shown, both for laser sweeps with a period of 1 or
2 seconds, all components manage to finish their compu-
tations in real-time, that is before the next state update.
The perception system reliably detected a candidate table

7http://www.willowgarage.com/iros2009-tabletop-manipulation
contains demonstration videos taken during the experiments.



and the object clusters sitting on it every time, the only
exception being environments where multiple tables were
located approximatively at the same distance from the robot.
The planning component had a success rate of 89%. The
failures we observed were due to inaccuracies in modeling
our obstacles which sometimes caused the planner to con-
sider the initial state of the robot was in collision. We are
working towards avoiding this issue in the future.

Fig. 9. Two screen-shots of a path plan being executed. The trail of the
end-effector is displayed as well.
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Fig. 10. Dynamic Obstacle Map computation plot (queue of 5 seconds)

0 5 10 15 20 25
Current laser sweep

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(in

se
co

nd
s) 1s static

1s dynamic
2s static
2s dynamic

Fig. 11. Inverse Kinematics (GAIK) computation plot
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Fig. 12. KPIECE Motion Planning computation plot

VI. CONCLUSIONS AND FUTURE WORK

We presented a modular and distributed framework for
a system that integrates online 3D perception with mobile
manipulation for personal robotics applications. To validate
its efficiency, we showed the integration of 3D collision maps
and semantic annotations created in real-time from sensed
laser data with a motion replanning framework as building
blocks towards efficient and robust pick and place scenarios.

While this is still work in progress, as we plan to deploy
and integrate our architecture with grasping planners to
close the sensing-action loop, we already make our software
available as an off-the-shelf component of the ROS project.
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