
Assisted Arm Teleoperation in Clutter Using
Constraints from 3D Sensor Data

Adam Leeper1,2, Kaijen Hsiao2, Matei Ciocarlie2, Ioan Sucan2, and Kenneth Salisbury1

1Stanford University, Stanford, California, USA.
2Willow Garage, Inc., Menlo Park, CA, USA.

Abstract—We introduce CAT, a constraint-aware teleoperation
method that can track continuously updating 6-DOF end-effector
goals while avoiding environment collisions, self-collisions, and
joint limits. Our method uses sequential quadratic programming
to generate motion trajectories that obey kinematic constraints
while attempting to reduce the distance to the goal with each
step. Environment models are created and updated at run-time
using a commodity depth camera. We compare our method to
three additional teleoperation strategies, based on global motion
planning, inverse kinematics, and Jacobian-transpose control.
Our analysis, using a real robot in a variety of scenes, highlights
the strengths of each method, and shows that the CAT method
we introduce performs well over a wide range of scenarios.

I. INTRODUCTION

Deployment of mobile manipulators in human settings could
be accelerated by including human-in-the-loop system com-
ponents. Teleoperation could be used for the more-difficult
components of a task, leaving the rest to autonomy, or as a
fallback option if autonomy fails. However, teleoperation can
be tedious and difficult; robot arm motion in particular presents
several challenges that can hinder an operator from focusing
on task completion. Highly-articulated arms often have non-
anthropomorphic configurations, non-intuitive workspaces and
joint limit constraints. Controlling such arms is made more
difficult when trying to also avoid collisions with objects in
cluttered human environments.

One way to address this problem is to create tools that
leverage autonomous capabilities even during operator-guided
motions. In this paper, we explore how to use control and
planning methods to allow an operator to command an end-
effector pose without worrying about kinematics or collision
avoidance, leaving those tasks to the robot. Along the way we
introduce CAT, a locally-optimal trajectory generation strategy
based on sequential quadratic programming [13, 17, 18, 20].

A. Problem Description and Goals

Our problem set-up includes a robot equipped with a
dexterous (7-DOF) arm. A remote operator controls the robot’s
arm by moving a Cartesian end-effector goal pose, and the
robot continuously tries to track the current goal. Focusing on
applicability to complex tasks in unstructured and cluttered
environments, the problem is set up as follows:r The goal is specified as a 6-DOF gripper pose.r The operator can continuously update the goal, without first

waiting for the robot to achieve previously-selected poses.

Fig. 1. Left: a teleoperated robot performing a manipulation task in a
cluttered environment. Right: the scene as seen by the operator, with visual
controls (colored rings and arrows) used for specifying end-effector pose
goals, and the robot’s collision map temporarily overlaid for visualization.

r The robot does not have a pre-constructed map of obstacles
in the environment, but instead maintains a continuously-
updating model of obstacles using a live stream of data
from its sensors (in our case, a Kinect depth camera).
Our goal in this paper is to compare methods for tracking the

end-effector goal specified as above, while enabling the user to
focus on task completion rather then joint-level constraints. At
each time step, the chosen arm control method takes as input
the current configuration of the arm as well as the current goal
pose, and outputs joint torques. In designing our arm control
methods, we aspire to the following goals:r Tracking: the end-effector should track the goal pose. When

the goal is unachievable (as defined by the constraints be-
low), the end-effector should follow as closely as possible.r Collision avoidance: the robot should avoid undesired col-
lisions anywhere on the arm.r Joint limit avoidance: the arm configuration should avoid
having joints close to or against their limits, to increase
manipulability and make future goals easier to achieve.

B. Contributions

This work is the first, to the best of our knowledge, to ex-
amine the problem of tracking a continuously-updating 6-DOF
end-effector pose, while avoiding contact with a volumetric
collision model generated in real-time from visual sensing.

To solve this problem, we introduce a constraint-aware
teleoperation (CAT) technique for performing Cartesian end-
effector control with the following characteristics:



r Takes input in 6-DOF Cartesian space, allowing for general
end-effector movement while not requiring the operator to
reason about the kinematics of the arm.r While not limited to straight-line motion towards the goal,
it attempts to reduce pose error relative to the goal at each
time step, in an attempt to balance fast goal tracking with
the flexibility needed to obey constraints.r Avoids violating (observable) constraints for the entire arm,
such as environment collisions and joint limits.r Generates and continuously updates a collision model of
the environment using live depth camera data.
In order to analyze the performance of CAT, we imple-

mented three other teleoperation strategies for comparison,
based on extensions to established arm-motion methods:r Joint-space global motion planning (MP), using sampling-

based planning to continuously replan as the goal changes.r Collision-aware inverse kinematics (IK), combining IK for
the goal pose, joint-space interpolation, and collision detec-
tion to find a collision-free trajectory.r Jacobian transpose torque control (JT), with no additional
constraint or collision avoidance capabilities.

In our experimental section we quantify and compare the
behavior of each approach over a common set of experiments.

II. RELATED WORK

Our work draws from many areas of research in telerobotics,
including control, haptics, and motion planning.

Dragan and Srinivasa [5] formalized the “do what I mean”
problem in teleoperation by defining an arbitration or policy-
blending component of the control loop. The CAT method
(and each alternative) can be viewed as an arbitration strategy
where the user provides input, the robot “predicts” geometric
constraints from sensor data, and CAT creates a motion that
attempts to satisfy both. Unlike [5], however, we are concerned
with general arm motion rather than specific task prediction.

Control methods in telerobotics typically compute torques
that “pull” a system toward one or more goals while pushing
it away from obstacles. Potential fields [11] are one such
method; circular fields [6] are better at avoiding local minima.
Sentis and Khatib [19] outline a method for hierarchical
control of task goals and constraints in which each goal is
achieved as closely as possible using artificial potential fields
in the nullspace of all higher-priority goals. Passenberg et al.
[16] provides an excellent summary of several methods for
improving bilateral teleoperation by adapting controllers to the
environment, operator, or task.

We draw some inspiration from haptic rendering methods;
we use a kinematic “proxy” for the robot state, and the pose
error is expressed through a virtual-coupling [3]. (Our system
can render the virtual coupling forces to the operator through
a haptic device, but this paper does not explore that aspect.)
Since we use a proxy and a sensor-based environment model
to compute motions, our system is a type of model-mediated
teleoperation [15]. In this context our motion constraints are
also a form of forbidden-region virtual fixtures [1] created

in real-time from sensor point clouds. Mitra and Niemeyer
[14] used constraints from model-based geometric collision
detection to avoid self-collisions and generate haptic force
feedback while teleoperating two 6-DOF arms, but they did
not do any environmental collision avoidance.

Randomized motion planning in arm configuration space
is very popular in autonomous robot systems [4], but it has
only recently reached the speed necessary for responsive
performance with continuously updating goals. Hauser [8]
tested a motion planning approach for teleoperation of 3-DOF
tasks that is very similar to the MP method we use; however,
our method uses 6- DOF end-effector goal poses, and is im-
plemented and tested on a real robot using live sensor data for
collision avoidance. Knepper et al. [12] proposed a hierarchical
planning method to greatly improve responsiveness, using a
rough global planner to guide a local planner.

Several recent studies have used sequential quadratic pro-
gramming methods for fast generation of robot motion plans,
though none have used these methods in teleoperation of a real
robot or with an emphasis on real-time collision avoidance.
Posa and Tedrake [18] focused on the problem of planning
through rigid-body contact, applied to generation of walking
trajectories; Werner et al. [20] similarly optimized walking
motions. Lampariello et al. [13] created optimal trajectories
for catching a ball in real-time, demonstrated in simulation.
Pham and Nakamura [17] demonstrated trajectory deformation
and motion stitching in response to new motion goals.

Most similar to our work, Jain et al. [10] used sequential
quadratic programming to enforce joint limit and contact
constraints while trying to reach a 6-DOF target. The contact
constraints in their work are generated using force sensors and
are intended to limit (but not eliminate) contact with obstacles.
This strategy is complementary to ours; visual sensors alone
cannot predict collisions with invisible or occluded obstacles,
while force sensors alone cannot avoid contact with fragile or
light obstacles for which even minor contact can be disastrous.
Using a full collision map generated by visual depth sensing
allows the CAT method to compute a multi-step trajectory
(Sec. IV-C), producing smoother and faster motion. Detecting
contact points only through force sensing means that the robot
has no geometric model of obstacles before hitting them and
thus cannot predict contacts in advance.

III. TELEOPERATION SYSTEM OVERVIEW

We begin with an overview of our system in order to provide
context for the teleoperation strategies described later.

The input command is a 6-DOF end-effector pose read
from the operator at 30 Hz. In our implementation, the pose
can be commanded through mouse interaction with on-screen
controls, or through a 6-DOF Razer Hydra input device.

Each teleoperation strategy is responsible for processing
this input pose at every time step and sending a command to
the appropriate low-level controller. Fig. 2 shows the system
block diagram for three of our strategies: CAT (Sec. IV), MP
(Sec. V), and IK (Sec. V). These three methods all generate



Fig. 2. Block diagram showing the hierarchical control structure for the
CAT, MP, and IK methods. The number of joints is denoted by n.

a trajectory of joint configurations which is passed to a low-
level joint trajectory follower. Quintic splines between joint
trajectory points are computed and passed to a standard joint
impedance controller. By contrast, the JT method (Sec. V)
simply passes the goal pose directly to a low-level Jacobian-
transpose controller not shown in the diagram. After pro-
cessing a goal command, each strategy restarts using the
most recent goal pose. Section IV-C describes how we ensure
continuity of trajectories while the robot arm is in motion.

We assume that the robot has joint encoders for measuring
its own kinematic configuration, and one or more sensors
for perceiving the environment. Our implementation uses a
commodity depth camera to build a continuously-updating
volumetric representation of the world, which is used for
predicting (and avoiding) collisions in the CAT, MP, and IK
strategies as decribed in section IV-B.

IV. CONSTRAINT-AWARE TELEOPERATION STRATEGY

The first method we describe is the Constraint-Aware Tele-
operation (CAT) controller, one of the main contributions of
this study. In general terms, CAT creates joint trajectories by
computing incremental joint position changes that reduce the
value of a cost function while simultaneously obeying a set of
constraints. It is designed to be used in a local fashion, quickly
computing small steps away from a known joint configuration,
but not expected to be globally optimal. We argue that in the
domain of teleoperation it is valuable to have an option that
combines responsiveness and constraint-awareness.

We formulate the problem as a instance of convex optimiza-
tion, namely a quadratic program (QP) with linear inequality
constraints that operates on a (time-varying) linearized model
of the robotic system. The solution to the QP represents a
small incremental change to the state of the system. The QP
is reformulated after each step due to the nonlinear kinematics
and because each new kinematic configuration may result in
new constraints due to predicted contact with the environment.
We note that each iteration of the QP solves for a single step,
but in each command period the QP is run many times1 to
create a continuous trajectory (see section IV-C).

1We use CVXGEN, a tool that generates highly-optimized, problem-specific
C-code (www.cvxgen.com). This allows each QP step to be solved orders of
magnitude faster (around 200-400 µs) than if using a generic solver.

A. Quadratic Program Formulation

We wish to compute joint deltas, ∆q, that move us closer to
a goal expressed as a quadratic objective function. In our QP,
the optimization variables are ∆q ∈ Rn, where n is the number
of joints, and the objective is a sum of quadratic functions of
the optimization variables. In particular, our QP objective is
composed of three parts:

1) Move toward a goal pose: For a desired Cartesian goal
pose, xd ∈ R6, we compute the necessary pose change, ∆xd,
from the proxy end-effector pose. Since our linear system
model is only valid for small displacements the error is
clipped to a maximum distance and angle of rotation when
computing ∆xd. With the end-effector Jacobian J ∈ R6×n

and a weighting matrix Wx ∈ R6×6, the objective term is:

(∆xd − J∆q)T Wx (∆xd − J∆q) (1)

2) Discourage large joint changes: This term encourages
the optimized variables to stay small. Even for a small
Cartesian movement, certain configurations can result in so-
lutions with large joint displacements, which is an artifact of
the linearized system. Defining a diagonal weighting matrix
W∆q ∈ Rn×n, the objective term is ∆qT W∆q ∆q.

3) Reach a given joint posture: This term encourages the
joints to move toward a desired vector of joint positions, qd. A
“passive” way to use this term is to set qd = (qmax+qmin)/2,
which has the effect of biasing each joint toward the center of
its workspace and away from joint limits. Alternatively, qd can
be actively commanded; for example, if qd is set to the value
of an IK solution and the other objective terms are given zero
weight, this term basically turns the entire CAT controller into
an IK controller that obeys constraints. Defining the weighting
matrix as Wq ∈ Rn×n, the objective term is:

((q + ∆q)− qd)T Wq ((q + ∆q)− qd) (2)

The QP constraints are defined as follows:
1) Obey joint limits: Simply put, the incremental joint

change may not push any joint past its position limits.

qmin ≤ (q + ∆q) ≤ qmax (3)

2) Do not move in the direction of contact: After each step,
the collision detector checks for contact with the environment
model, providing a point, ci ∈ R3, and normal, ni ∈ R3, for
each contact. On the subsequent step this contact set is used
to constrain the change in position of each contact point. The
velocity Jacobian is computed for each contact point and is
denoted Jci ∈ R3×n. We assume that motion perpendicular to
the contact normal is acceptable, but the point of contact may
not move further into collision: nTi (Jci∆q) ≥ 0.

Additional objective terms or constraints are certainly pos-
sible. For example, while the contact constraints used in this
paper can be viewed as an example of forbidden-region virtual
fixtures [1], terms could be added to the objective to help a
user follow a particular path or track a moving object.



B. Step Validation and Collision Detection

Collision detection is a key component of the CAT, MP, and
IK strategies.2 Our system uses a commodity depth camera
to build a continuously-updating volumetric representation of
the world. Specifically, we use the Flexible Collision Library
(FCL) to perform collision checks with an octree representa-
tion of the environment maintained using the Octomap library
[9]. An example of a real-world scene and the corresponding
Octomap is shown in Fig. 1.

In the CAT controller, collisions are computed after each
QP step. The updated kinematic state is used to find the
contact points and normals between the robot model and the
environment model. Steps that have taken the robot into a
colliding state can be accepted or rejected depending on the
tolerance for predicted collisions. The contact information is
used to formulate the constraints on the next QP step, which
will prevent further motion into the contact constraint. We
note that cases of desired contact, such as between the gripper
and the environment, can be handled by disabling collision
checking for links or objects that should not be constrained.

C. Generating Suitable Motion Trajectories

The CAT, MP and IK methods each generate joint-space
trajectories which are executed on the robot by a low-level
1kHz joint impedance controller. In general, the following
elements complicate the relationship between responsiveness,
speed, and safety in our teleoperation strategies:

1) Velocity Limits: The trajectory of joint motions gener-
ated via CAT (and the IK method) is checked for collisions.
The number of steps is limited by computation time in each
command period, so the robot has a finite horizon in which
it can predict constraints. Hence, the robot must limit joint
velocities such that each joint can come to a complete stop at
the end of any given trajectory. Otherwise, this could lead to
an inevitable collision state, where the robot is unable to stop
in time to avoid obstacles that appear suddenly.

Since longer computed trajectories will result in higher
allowable movement speed, we run the CAT and IK methods
at 30 Hz (which is the update rate of the user command
input) and compute as many steps as possible in the allotted
time (approximately 25 in our implementation), as opposed to
sending a single trajectory point at a time at a much faster
rate ( 1kHz). This is a major difference from the MPC used in
[10], which must compute a single point at a time and move
slowly since the collision detection comes from force-contact
sensors and cannot be predicted.

2) Continuity: The trajectory that was most recently sent
to the joint trajectory follower will be partially executed by
the time a new trajectory result is available. Hence, it is
necessary to ensure continuity of commanded joint positions
and velocities when splicing in the new trajectory.

Each strategy is responsible for returning a result before a
time limit, tf , at the end of each command period. The starting

2Collision detection is by far the most expensive part of the trajectory
computation process, on the order of 1 ms per check in our implementation.

state, q, for the computation is picked to be the first point in the
previous trajectory that was scheduled to be executed after tf .
Assuming the trajectory is computed in time, it can be spliced
into the execution queue without a problem.

If a trajectory is not computed in time for any reason,
the result must be discarded altogether. To prevent repeated
failure due to insufficient time, we use an adaptive command
period (similar to [7]), allowing more time if the previous
computation failed and less time if there was time to spare.
We note that this adaptive timing is most important for the MP
strategy, as CAT and IK work incrementally and can almost
always return a result before the time limit.

V. ALTERNATIVE METHODS

We implemented three established approaches to arm tele-
operation for comparison to our CAT method.r Collision-Aware Inverse Kinematics (IK). In each com-

mand period (at 30 Hz), for the current end-effector goal
pose, we look for a set of collision-free joint angles that
achieve the goal. If successful, we create a trajectory to the
goal using linear interpolation in joint-space. A collision
check is performed for each step in the interpolation,
ensuring the motion will avoid collisions. If the command
period will be exceeded by checking the entire trajectory,
a partial trajectory is used (as described in section IV-C).r Motion Planning (MP). Sampling-based planning algo-
rithms [4] are starting to approach the computational ef-
ficiency and responsiveness needed for arm teleoperation
[8]. Our MP method uses RRT-Connect3, a bi-directional
sampling-based planner, to compute a trajectory to the
most recent goal configuration (found using collision-free
inverse kinematics). Motion planning has the advantage of
operating in the global configuration space, and is able to
find paths that take locally error-increasing steps in order
to escape local minima. The downside is the additional
computation time needed; the MP method was run at a
nominal rate of 4 Hz (with adaptive timing as needed).r Jacobian-transpose Control (JT). This method tracks the
Cartesian goal using a standard torque control law of the
form τp = JT f , where f is a wrench computed from the
error between the actual gripper pose and the goal pose at
1 kHz. New goal poses are sent to the controller at 30 Hz.

VI. EXPERIMENTAL RESULTS

We implemented, tested and compared all the teleoperation
methods described above on a variety of scenes and trajecto-
ries. The hardware consisted of a PR2 robot, equipped with a
7-DOF arm. For environment sensing we used a Kinect sensor
mounted on the robot’s head.

For each scene, we used one of the two input devices
described in Sec. III (mouse and Razer Hydra) to record a
trajectory of end-effector goals over time. Starting from the

3Recent benchmarks [2] show that RRT-Connect works well in typical
manipulation settings. We found that other bi-directional planners (e.g.,
SBL) produce similar results, while single-tree planners significantly increase
planning times. We used the planner implementations available in OMPL [4].



0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

D
is

ta
n

c
e

 f
ro

m
 s

ta
rt

 (
m

)

 

 

Input

JT

IK

MP

CAT

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

D
is

ta
n

c
e

 f
ro

m
 s

ta
rt

 (
m

)

 

 

Input

JT

IK

MP

CAT

0 1 2 3
0

0.05

0.1

0.15

0.2

Time (s)

D
is

ta
n

c
e

 f
ro

m
 s

ta
rt

 (
m

)

0 5 10 15
0

5

10

15

20

25

30

35

Time (s)

M
a

g
n

it
u

d
e

 o
f 

c
o

n
ta

c
t 

fo
rc

e
 (

N
)

 

 

JT

IK

MP

CAT

(a) (b)
Fig. 3. (a) Response to free-space motion between a starting robot pose
(transparent) and the goal end-effector pose (opaque). The top plot shows
tracking results for a step input, showing the distance from the starting pose
over time, for both the goal pose and the end-effector pose achieved by each
teleoperation method. The bottom plot shows results for a continuous input.
(b) Motion across a set of rigid boards 9 cm wide, 6 cm high, and 24 cm
apart, in response to a continuous input translation.

same initial robot pose, the recorded goal trajectory was then
played back for each of our teleoperation methods, and the
resultant arm motion was recorded. In addition, we used a 6
DOF force/torque sensor mounted in the wrist to record end-
effector forces from contacts with the environment.

The first scene (fig. 3a) did not contain any obstacles. While
the focus of our methods is efficient operation in cluttered
settings, numerous tasks will contain at least parts of the
trajectories where no obstacles play a role, and good tracking
in these region is important for overall efficiency. We present
two cases: a step input where the goal pose is directly set to the
desired final pose of the gripper; and a continuous input where
the goal is moved from the starting location of the gripper to
its desired final pose over the course of approximately 1.5s.
We believe the second case to be more representative of real-
life teleoperation, where the operator continuously updates the
goal and moves it towards the desired location.

We notice that all four methods track the desired pose. We
focus in more detail on two metrics: response time (time after
a new goal is specified until the arm starts to move) and total
time (needed to reach the goal). As expected, JT achieves the
lowest times for both metrics, while MP is the slowest. In the
step input case, CAT shows lower response time but higher
total time than MP; in the continuous input case, it achieves
lower times on both metrics, ranking immediately behind JT.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Time (s)

M
a
g
n
it
u
d
e
 o

f 
p
o
s
it
io

n
 e

rr
o
r 

(m
)

 

 

JT

IK

MP

CAT

(a)

0 2 4 6
0

0.5

1

1.5

2

2.5

Time (s)

M
a
g
n
it
u
d
e
 o

f 
o
ri
e
n
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

(b)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Time (s)

M
a
g
n
it
u
d
e
 o

f 
p
o
s
it
io

n
 e

rr
o
r 

(m
)

(c)

Fig. 4. Additional constrained teleoperation examples. a) Collision constraint
perpendicular to straight line motion to goal. b) Straight path to goal hits joint
limit (starting with gripper pointing down and ending with gripper pointing
up). c) Part of the goal trajectory is outside the robot’s workspace. In this case,
end-effector goals outside the workspace are shown as disembodied grippers;
closest reachable gripper pose for the goal in the bottom right is shown as a
transparent robot posture. (Plot colors are consistent across all figures.)

Fig. 3b looks at a case where the direct path to the specified
goal is blocked by obstacles (in this case, boards clamped to
the table). As seen in the tracking results, the JT method gets
physically stuck on the boards due to friction, and the IK
method detects the impending collision along the path and
stops; neither method reaches the final goal. MP is able to
plan a path around the obstacles, though it has some trouble
following the continuously moving goal as it passes through
infeasible locations. CAT performs the best in this scenario as
it is able to follow the goal quite closely while “sliding” up
and over the virtual constraints without actually touching the
boards (as shown in the force data).

We note that in the scene of Fig. 3b the obstacles do
not create a local minimum. However, in a case where the
straight path to the goal is perpendicular to the obstacle surface
(Fig. 4a), local methods such as JT and CAT are unable to
escape. MP is able to plan a path that temporarily increases
tracking error in order to eventually reach the goal.

Fig. 4b demonstrates how joint limit constraints affect the
presented methods. In this common scenario, achieving the
goal pose is not possible using just wrist DOFs, as it requires
also rotating the forearm. By tracking the straight path to the
goal, JT gets stuck against the wrist joint limit with the gripper



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

M
a

g
n

it
u

d
e

 o
f 

p
o

s
it
io

n
 e

rr
o

r 
(m

)

 

 

JT

IK

MP

CAT

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

M
a

g
n

it
u

d
e

 o
f 

p
o

s
it
io

n
 e

rr
o

r 
(m

)

 

 

JT

IK

MP

CAT

(a) (b)
Fig. 5. a) Tracking results for reaching into a shelf with a collision-free
goal trajectory. b) Results for exiting the shelf with a colliding goal trajectory.

in a horizontal pose. In contrast, CAT, MP, and IK are able to
keep the arm away from joint limits and reach the goal (the
final pose as achieved by MP is shown in the image). Fig. 4c
shows the case where part of the goal trajectory is outside
the robot’s workspace. Here we notice that MP and IK simply
stop tracking while the goal is unreachable (from 4 seconds
to approximately 8.5 seconds into the trajectory). In contrast,
JT and CAT track the goal along the edge of the workspace.

To show off more general, overall behavior in a typical
cluttered scene, Fig. 5 plots tracking results for reaching into
and retreating out of the cluttered shelf shown in Fig. 1. The
goal trajectory for the reach in was demonstrated with a Razer
Hydra, with the operator being careful to select goal poses
that were not colliding. Tracking error is shown in Fig. 5a. In
this case, JT performs best because the goal poses happen to
be collision-free. CAT follows close behind, with the larger
tracking error due to joint limit avoidance. IK gets stuck
because of momentarily infeasible goals. MP follows the initial
part of the trajectory, then stops, and eventually moves to the
goal (the plot is truncated to better show the behavior of the
other methods). Fig. 5b shows results for the retreat, in which
the goal trajectory collides with the shelf. JT again gets there
fastest, but hits the shelf with high force (like in Fig. 3b) on
the way. CAT follows close behind without hitting the shelf,
IK gets stuck, and MP eventually gets there.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we focused on the problem of assisted
teleoperation in unstructured environments based on visual
sensing. We introduced CAT, a constraint-aware teleoperation
controller based on sequential quadratic programming, which
continuously attempts to reduce the tracking error while taking
into account constraints such as collisions or joint limits.

Manipulation in cluttered environments is by nature a
highly-constrained task. In our experiments, we used a real
robot and real sensor data collected during task execution to
explore a number of these constraints. Our analysis included
the CAT controller, as well as three additional methods:
global motion planning with a continuously-updating goal
pose (MP), collision-aware inverse kinematics with joint-space
interpolation (IK), and Jacobian-transpose control (JT).

Our results show that each of the teleoperation methods
has desirable characteristics in some situations. The JT ap-
proach is the most responsive and fastest to reach the goal

in less-constrained settings. Unfortunately, it lacks collision-
avoidance assistance, and thus is prone to undesirable col-
lisions. The IK approach is also very responsive in less-
constrained settings, avoids colliding with itself and with the
environment, and is better than JT at dealing with joint limit
constraints. However, it easily gets stuck when obstacles are
in the way or goals are infeasible. Since the MP method is
based on global motion planning, it is the only one that will
reach the goal when the others get stuck in local minima.
However, it is also the least responsive of those tested, and
current implementations also lack the ability to provide a “best
effort” approach in cases where the goal pose is unreachable.

Based on the presented results, we believe that the CAT
controller provides the best balance in terms of our stated
goals: it can track constrained end-effector goal poses with a
fast response, including providing “best effort” approaches to
infeasible goals, avoid undesired collisions with itself and with
the environment, and deal with joint limit constraints. With an
operator in the loop to provide high-level motions that can
take the robot around major obstacles that would cause the
CAT controller to get stuck in local minima, we believe that
the CAT controller is the overall winner in most situations.

However, our results also suggest that complete manipu-
lation tasks could benefit from the strengths of each of these
methods. An interesting approach is to allow switching among
the methods based on context. However, asking the operator to
actively select situationally-appropriate teleoperation methods
requires a higher level of expertise (and can introduce delay),
while automated switching implies task-level context aware-
ness on the part of the robot. We plan to investigate these
paths as part of our future studies.

REFERENCES

[1] J. Abbott, P. Marayong, and A. Okamura. Haptic vir-
tual fixtures for robot-assisted manipulation. Robotics
Research, pages 49–64, 2007.

[2] B. Cohen, I. Şucan, and S. Chitta. A generic infrastruc-
ture for benchmarking motion planners. In IROS, 2012.

[3] J.E. Colgate, M.C. Stanley, and J.M. Brown. Issues in
the haptic display of tool use. In IROS, 1995.

[4] I. Şucan, M. Moll, and L. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Maga-
zine, 19(4):72–82, December 2012.

[5] Anca D Dragan and Siddhartha S Srinivasa. Formalizing
Assistive Teleoperation. In RSS, 2012.

[6] S. Haddadin, S. Belder, and A. Albu-Schäffer. Dynamic
motion planning for robots in partially unknown environ-
ments. In IFAC, 2011.

[7] Kris Hauser. On responsiveness, safety, and completeness
in real-time motion planning. Autonomous Robots, 32(1):
35–48, September 2011.

[8] Kris Hauser. Recognition, Prediction, and Planning for
Assisted Teleoperation of Freeform Tasks. In RSS, 2012.

[9] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An Efficient

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.7969&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.7969&rep=rep1&type=pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=525875
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=525875
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://www.roboticsproceedings.org/rss08/p10.pdf
http://www.roboticsproceedings.org/rss08/p10.pdf
http://www.springerlink.com/index/10.1007/s10514-011-9254-z
http://www.springerlink.com/index/10.1007/s10514-011-9254-z
http://octomap.github.com


Probabilistic 3D Mapping Framework Based on Octrees.
Autonomous Robots, 2013.

[10] A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp.
Reaching in clutter with whole-arm tactile sensing. IJRR,
32(4):458–482, March 2013. ISSN 0278-3649.

[11] O. Khatib. Real-Time Obstacle Avoidance for Manipula-
tors and Mobile Robots. IJRR, 5(1):90–98, March 1986.

[12] R. Knepper, S. Srinivasa, and M. Mason. Hierarchical
planning architectures for mobile manipulation tasks in
indoor environments. In ICRA, 2010.

[13] Roberto Lampariello, Duy Nguyen-Tuong, Claudio
Castellini, Gerd Hirzinger, and Jan Peters. Trajectory
planning for optimal robot catching in real-time. In
ICRA, 2011.

[14] P. Mitra and G. Niemeyer. Haptic Simulation of Ma-
nipulator Collisions Using Dynamic Proxies. Presence:
Teleoperators and Virtual Environments, 16, 2007.

[15] P. Mitra and G. Niemeyer. Model-mediated telemanipu-
lation. IJRR, 27(2):253–262, 2008.

[16] C. Passenberg, A. Peer, and M. Buss. A survey of
environment-, operator-, and task-adapted controllers for
teleoperation systems. Mechatronics, 20(7), 2010.

[17] QC Pham and Yoshihiko Nakamura. Affine trajectory
deformation for redundant manipulators. In Robotics:
Science and Systems, 2012.

[18] Michael Posa and Russ Tedrake. Direct Trajectory
Optimization of Rigid Body Dynamical Systems through
Contact. Algorithmic Foundations of Robotics X, 86:527–
542, 2013.

[19] L. Sentis and O. Khatib. Synthesis of whole-body behav-
iors through hierarchical control of behavioral primitives.
Intl. J. of Humanoid Robotics, 2(04):505–518, 2005.

[20] Alexander Werner, Roberto Lampariello, and Christian
Ott. Optimization-based generation and experimental val-
idation of optimal walking trajectories for biped robots.
In IROS, October 2012.

http://octomap.github.com
http://ijr.sagepub.com/cgi/doi/10.1177/0278364912471865
http://ijr.sagepub.com/cgi/doi/10.1177/027836498600500106
http://ijr.sagepub.com/cgi/doi/10.1177/027836498600500106
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509669
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509669
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5509669
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980114
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980114
http://ijr.sagepub.com/content/27/2/253.short
http://ijr.sagepub.com/content/27/2/253.short
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.179.1765&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.179.1765&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.179.1765&rep=rep1&type=pdf
http://www.roboticsproceedings.org/rss08/p42.pdf
http://www.roboticsproceedings.org/rss08/p42.pdf
http://link.springer.com/10.1007/978-3-642-36279-8
http://link.springer.com/10.1007/978-3-642-36279-8
http://link.springer.com/10.1007/978-3-642-36279-8
http://www.robotics.stanford.edu/~lsentis/files/ijhr-05-old.pdf
http://www.robotics.stanford.edu/~lsentis/files/ijhr-05-old.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6386154
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6386154

	Introduction
	Problem Description and Goals
	Contributions

	Related Work
	Teleoperation System Overview
	 Constraint-Aware Teleoperation Strategy 
	Quadratic Program Formulation
	Move toward a goal pose
	Discourage large joint changes
	Reach a given joint posture
	Obey joint limits
	Do not move in the direction of contact

	Step Validation and Collision Detection
	Generating Suitable Motion Trajectories
	Velocity Limits
	Continuity


	Alternative Methods
	Experimental Results
	Discussion and Conclusions

